Math 203 Spring 2013-Exam 1

Instructor: J. Shapiro

Work carefully and neatly and remember that I cannot grade what I cannot read. You must show all relevant work in the appropriate space. You may receive no credit for a correct answer if there is insufficient supporting work. Notes, books and graphing or programable calculators are NOT ALLOWED.
[18pts] 1. Fill in the blanks with always, sometimes, never so that the following are correct statements.
(a) If A is a 3×3 matrix with three pivot points, then $A x=\mathbf{0}$ \qquad has a unique solution.
(b) If A is a 3×3 matrix with two pivot points, then $A x=\mathbf{b}$ \qquad has a solution.
(c) Let A be any $n \times m$ matrix. If u is a solution to $A x=\mathbf{0}$ and w a solution to $A x=\mathbf{b}$, then $u+w$ is \qquad a solution to $A x=\mathbf{b}$.
(d) If the vectors v_{1}, v_{2}, v_{3} are linearly dependent vectors in \mathbb{R}^{4} and v_{4} is any vector in \mathbb{R}^{4}, then the set $v_{1}, v_{2}, v_{3}, v_{4}$ is \qquad linearly dependent.
(e) If A is a 3×3 matrix such that $A x=\mathbf{0}$ has many solution, then $A x=\mathbf{b}$ \qquad has a solution.
(f) Let A be a matrix such that the equation $A x=\mathbf{0}$ has a unique solution. Then the columns of A are \qquad linearly independent.
[16] 2. For each of the following augmented matrices, describe the solution set.
(a) $\left[\begin{array}{ll|l}1 & 2 & 3 \\ 0 & 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{rrr|r}1 & 0 & 3 & 2 \\ 0 & 2 & -4 & 4 \\ 0 & 0 & 0 & 0\end{array}\right]$
3. For what value(s) of a is the following augmented matrix a consistent system?

$$
\left[\begin{array}{rrr|r}
1 & 0 & 3 & 1 \\
2 & 1 & 2 & -2 \\
2 & -1 & a & 1
\end{array}\right]
$$

[10]
4. Determine if the vector $\mathbf{b}=\left(\begin{array}{l}5 \\ 4 \\ 3\end{array}\right)$ is in the span of the set $\left\{\left(\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)\right\}$
[10pts] 5. What should h be so that the vectors $\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 7\end{array}\right),\left(\begin{array}{l}5 \\ 5 \\ h\end{array}\right)$ are linearly dependent.
[10pts] 6. Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be a linear transformation such that

$$
T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{1}{2}, T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\binom{1}{-2} \text { and } T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\binom{3}{-2} . \text { Compute } T\left(\begin{array}{r}
3 \\
-2 \\
2
\end{array}\right) .
$$

[10pts] 7. Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ be a linear transformation such that $T\binom{a}{b}=\left(\begin{array}{c}a-b \\ 3 a+b \\ a+b\end{array}\right)$. Find the standard matrix of T.
8. Consider the following system of equations: $\begin{aligned} x_{1}-2 x_{2} & =0 \\ 2 x_{2}-4 x_{3}+2 x_{4}+2 x_{6} & =0 \\ 3 x_{4}+6 x_{5} & =0\end{aligned}$
[4pts] (a) Write down the associated augmented matrix for the above system.
[4pts] (b) List the free variables of the system.
[8pts]
(c) Given that the matrix in part (a) reduces to $\left(\begin{array}{rrrrrr|l}1 & 0 & -4 & 0 & -4 & 2 & 0 \\ 0 & 1 & -2 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & 0\end{array}\right)$, describe the solution set to the homogeneous system in parametric form.
(d) Given that $v=[0,-1,1,-1,2,1]$ is a solution to $A x=b$, where A is the coefficient [4pts] matrix of the original system and $b=\left(\begin{array}{r}2 \\ -6 \\ 3\end{array}\right)$, use the previous part to write all solutions in parametric vector form to the matrix equation $A x=b$.

